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A reflectance-mode confocal scanning laser microscope (rCSLM) was developed for imaging early-stage
melanoma in a living mouse model without the addition of exogenous contrast agents. Lesions were first
located by surveying the dorsum with a polarized light camera, then imaged with the rCSLM. The images
demonstrated two characteristics of melanoma in this animal model: (1) melanocytes and apparent tumor nests
in the epidermis at the stratum spinosum in a state of pagetoid spread and (2) architectural disruption of the
dermal–epidermal junction. The epidermal melanocytes and apparent tumor nests had a high melanin content,
which caused their reflectance to be fivefold greater than the surrounding epidermis. The rCSLM images
illustrate the difference between normal skin and sites with apparent melanoma. This imaging modality shows
promise to track the progression of melanoma lesions in animal models.
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INTRODUCTION
Reflectance-mode confocal microscopy (rCSLM) offers a
means to image mouse skin in vivo by exploiting scattering
from microscopic biological variations in refractive index.
The light-scattering properties of cutaneous tissues provide
optical contrast for imaging the presence and spatial
distribution of pigmented melanoma against the background
of healthy tissue in a pigmented murine model, the
hepatocyte growth factor/scatter factor transgenic mouse
(HGF/B6) (Noonan et al., 2001). Components of skin whose
refractive index are higher than the bulk refractive index of
epidermis (nepi¼1.34) (Rajadhyaksha et al., 1999), such as
keratin in stratum corneum (n¼1.51) (Rajadhyaksha et al.,
1999), hydrated collagen (n¼ 1.43) (Wang et al., 1996), and
melanin (n¼1.7) (Vitkin et al., 1994) can be imaged with
backscattered light.

Conventional wide-field microscopy illuminates and
images a large volume simultaneously, so thin histological
sections must be prepared to observe structural, cellular, and
subcellular details. Optical sectioning in rCSLM blocks
multiply scattered light so the image of the tissue in the

plane of focus remains sharp despite light scattered above
and below that plane. Confocal microscopy is limited in
depth to the ballistic regime where photons propagate
unscattered to the focus, backscatter from the focus
toward the microscope, and escape the tissue without
scattering. At deeper depths, the low level of light owing
to multiply scattered photons becomes the optical noise
floor for the image, specifying the practical depth limit
for rCSLM imaging. The imaging depth range of rCSLM in
this work (50–100mm) was limited primarily by the laser
wavelength used (488 nm). As mouse epidermis is thin
(B15 mm, Figure 3), even enlarged epidermis (B40 mm,
Figure 4b) associated with tumors can be imaged fully.
By comparison, imaging with rCSLM in human skin
(Rajadhyaksha et al., 1999) with 830-nm laser light encoun-
ters 1.7-fold less scattering and 4 fold less optical
absorption (Jacques, 1998). The imaging depth is increased
to 250mm, which sufficiently images human epidermis
(60–100 mm).

The long-term goal of this work is to contribute to on-
going efforts to ‘‘humanize’’ the mouse melanoma model
such that melanoma onset in the mouse model better mimics
early stage human melanoma where tumors originate in the
interfollicular epidermis and invade locally downward
through the epidermal–dermal junction (DEJ) rather than
originating in the deeper dermis as in current mouse models.
In human skin, melanomas are characterized by polymorphic
(multilobed) melanocytes (Greger et al., 2005). One goal of
this work was to survey the features of this animal model and
identify characteristic structures that occur only in melanoma
and not in normal skin (Figure 7).

The rCSLM images can detect the early progression of
melanoma in the subepidermal layer and its violation of the
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DEJ by revealing melanocytic structures in this well-
characterized animal model of UV-induced melanoma
(Noonan et al., 2001). Melanoma can be characterized by
the high reflectance from melanocytes and strong attenuation
within tumors. Melanin granules (B30 nm diameter within
melanosomes) have a refractive index of 1.7 (Vitkin et al.,
1994) compared with the surrounding cytoplasm of 1.35
(Brunsting and Mullaney, 1974). Therefore, melanin granules
scatter light, providing a strong endogenous contrast agent for
rCSLM (Rajadhyaksha et al., 1995) image of melanocytes.
The two key features of melanoma imaged by rCSLM were
(1) pagetoid melanocytes and tumor nests in the epidermis
and (2) altered skin ultrastructure described as the disruption
of the DEJ. The ability of rCSLM to image the development of
these features suggests that time course imaging may
elucidate the dynamically invasive nature of melanoma
lesions in this mouse model.

RESULTS
Excised samples were fixed in formalin, sectioned, and
stained using hematoxylin and eosin. Samples stained with a
histological counter stain for iron pigment showed that the
pigment was in fact melanin. A melanin-bleach method
revealed subcellular detail in melanoma cells verifying the
atypical nuclei in tumor cells. Immunohistochemical staining
with the antibody PEP8H specified the melanocyte antigen
dopachrome tautomerase (DCT) and verified the presence of
melanocytes. Figure 1 shows an immunohistochemically
stained tumor biopsy.

Figure 2a and b shows a typical experiment where a lesion
is identified and imaged over 3 weeks. The nodular tumor is
indicated both with and without involvement of the
surrounding dermis. This rapid nodular growth developed
in approximately half of the observed tumors.

Eight lesions identified by polarized imaging showed
suspicious areas of uneven confocal reflectance in the
epidermis and at the DEJ. Five normal sites (Figure 3) were
characterized in a sagittal view (image of a plane perpendi-
cular to the surface) by a relatively uniform reflectance with
the absence of highly reflective structures. As a measure of

Figure 1. The immunohistochemical stain for dopachrome tautomerase

verifies that the tumor is a melanoma. Epidermal melanocytes are shown

with arrows.

Figure 2. Digital photography of tumors. Digital photograph of (a) early-

stage tumor and (b) late-stage tumor 2 weeks later. Bar¼4 mm.
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Figure 3. Normal skin. Figure of normal skin, correlating histology (a) with

confocal microscopy of normal skin in (b) sagittal view. (c) A set of en face

images taken at various depths on a different normal skin site.
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dermal reflectance uniformity, the maximum contrast (bright-
est voxel value divided by dimmest) was 1.370.2. Normal
epidermis was about 15 mm thick (one or two cell layers)
based on the histological image (Figure 3a). Collagen
reflectance in the underlying dermis was uniform and the
DEJ was relatively flat. Melanocytes were sparse among

keratinocytes, yet frequent enough to give the skin a dark
tone to the eye. Melanocytes accounted for less than 1% of
epidermal cells as observed by rCSLM and histology. In
contrast, melanoma lesions were well populated with
pleomorphic melanocytes and melanocyte nests.

Melanoma lesions contained high levels of melanin and
were located repeatedly as dark regions in wide-field images
and bright regions in subepidermal microscopic images.
Malignant tumors presented nodular regions of high reflec-
tance and thickened epidermis and often surrounded hair
follicles. Figure 4a and b shows a sagittal view. rCSLM
features common to confocal images of tumors (Figure 4b
and c) included melanocytic cells migrating upward into the
epidermis. Figure 4c shows a series of en face images
progressing from the surface of the skin through the epidermis
into the dermis.

To the eye, the tone of the normal skin on the melanoma-
induced HGF/B6 mouse was not much lighter than the tone
in the melanoma lesions or the normal pigmented tissue
although the confocal microscopy clearly showed an
increased presence of melanotic features with strong back-
scattering of light in the tumors. The putative melanoma cells
were large, abundant, and irregularly shaped.

In Figure 5, two axial profiles (vertical white lines,
Figure 4) of reflectance are plotted versus depth, one
intersecting an epidermal melanocyte and the other just
adjacent. Calibration (equation 2) was applied to the data to
yield reflectance units.

At the tissue surface (z¼16 mm, Figure 5) the water/
stratum corneum interface reflectivity was Rmeasured¼
0.0013. The Fresnel reflectance predicted from an interface
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Figure 4. Melanoma. (a) Histology with an iron counter stain shows that the

pigment is not iron. This late-stage tumor has ulcerated. The insets show (left)

the epidermal thickening (left to right) and (right) the epidermal melanocytes

indicated with arrows. In the confocal images (b, sagittal, c, en face) the

malignant tumor is identified by bright areas of high melanin density located

in single epidermal melanoma cells and at larger structures of these cells at

the DEJ. HF, hair follicle (hair has been Nair’d
TM

) 50 mm in diameter. M,

epidermal melanocytes. GC, granular cells with dark nuclei beneath the

stratum corneum. Cells in the granular layer within the epidermis appear with

dark nuclei, which backscatter less light than the surrounding cytoplasm/cell

wall/extracellular matrix. DEJ, dermal–epidermal junction. EM, irregular

groups of polymorphic melanocytes at DEJ. The white lines at x¼ 132 marks

an axial z-profile that will be analyzed in Figure 5.
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Figure 5. The axial reflectance profile through one melanocytic cell, relative

to surrounding epidermis. Circles represent the data from the solid white line

in Figure 4 b, diamonds represent data from the dashed white line. Centered

at z¼16 mm, the reflectance of the stratum corneum (SC) is 1.3�10�3.

Beneath the SC, the bulk tissue reflectance decay is fit with an exponential.

Centered at z¼45 mm, an epidermal melanocyte’s measured peak reflectance

is m¼ 2.3�10�4, which is 1.87�10�4 above the epidermal background at

z¼45 mm (4.3�10�5). The decaying exponential least-squares error fit to the

data, which is not sensitive to data points in the SC (zo24 mm) or in the

melanocyte (404z448), represents the background reflectance of the

epidermis.
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of water (nH2O ¼ 1:33 ) and stratum corneum (n¼ 1.51) is
Rtheoretical¼0.0040. The difference between Rtheoretical and
Rmeasured is probably because of roughness of the stratum
corneum. At z¼ 45 mm, the reflectance of the melanocyte
(Figure 5) was Rmel¼ 0.00023 and the reflectance of the
background was only Repi¼ 0.000043. The melanocyte
stands out from the background epidermis by a factor of
Rmel/Repi¼ 5.3.

In addition to the axial decay characterization described
above, an en face analysis was used to compare populations
of tumor characteristics. Tumor cells and nests were
characterized by directly comparing their reflectance to that
of the laterally surrounding epidermis. Five features (mela-
nocytic cells or tumor nests) were picked from Figure 4c
along with the corresponding five adjacent normal areas.
Figure 6a shows the same en face images as in Figure 4c
replotted with the tumor features marked. A 3� 3 voxel
(1.5�1.5 mm) square region centered on the points picked as

tumor and normal was averaged to yield the reflectance of
tumor (Rt) and normal (Rn) tissue, respectively. In Figure 6a,
the black open circles indicate normal sites and asterisks to
indicate tumor sites. Figure 6b shows the paired points, Rt vs
Rn, for the tumor and normal sites of Figure 6a. The average
reflectances shown for the five pairs represent the mean and
standard deviation of the nine-voxel region. Although the
reflectance variability within a particular tissue was large
because of the natural texture of the tissue, the mean
reflectance level was consistently larger for the tumor
(RtE5.2Rn).

Table 1 lists the mean ratio of melanocyte reflectance
(Rt) to epidermal reflectance (Rn). For the five tumors
imaged, the value of Rt/Rn was 5.071.6, which agreed
with a simple model Rt/Rn¼ 5.2 (equation 1). Table 1 also
includes the results from a separate tumor on the same
animal and three tumors on a separate animal (images not
shown).

Figure 7 compares en face confocal images of tumors
versus normal tissue. In general, the characteristic tumor
structures were strongly scattering. Two distinct forms of
involvement were seen. (1) In the epidermis, atypical
melanocytes and tumor nests were observed in the tumor
where only normal granular cells presented in the normal.
The melanocytic lesions in the mouse epidermis exhibited
pagetoid spreading, characteristic of human intraepidermal
melanoma cells. (2) At the basement membrane where the
DEJ was flat and continuous in healthy tissue, tumors
presented irregularity where the architecture of the DEJ was
disrupted.

DISCUSSION
This report illustrates our attempt to image melanoma and
characterize malignancy in early-stage tumors. It was a
challenge to follow lesions on a living animal and prepare
histology of the same region with precision. The endogenous
landmarks used such as hair follicles proved insufficient to
reliably and consistently correlate the confocal microscopy
with the histology. Exogenous markers such as tattooing
should be pursued. Comprehensive imaging for detection of
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Figure 6. The contrast of melanoma. (a) Five paired tumor (*) and normal

(o) sites were chosen at various depths. (b) The reflectance at the five tumor

locations is shown as a function of their normal counterpart’s reflectance.

Table 1. The contrast between atypical tumor features
and background tissue

Tissue site Mean Rt/Rn SD Rt/Rn

1. Figure 5 5.0 1.6

2. Not shown 4.7 0.7

3. Not shown 6.7 1.8

4. Not shown 6.3 1.0

5. Not shown 5.3 0.7

SD, standard deviation.
The reflectance of tumor features (epidermal melanocytes or tumor cell
nests) Rt is divided by the reflectance of five normal surrounding tissue Rn.
Each result, the mean and SD, n=5 features per site for each of five tissue
sites on two animals, represents the ratio Rt/Rn. The five features per site
were a mixture of melanocytes and tumor nests.
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epidermal tumors might include confocal mosaics (Chow
et al., 2006) of a large square region (B2�2 cm), marked by
tattoo on younger animals over time with corresponding
polarized light images (Jacques et al., 2000, 2002; Gareau
et al., 2005).

This report has concentrated on illustrating two features of
apparent melanoma: (1) the presence of melanocytic cells
and tumor nests in the epidermis indicative of pagetoid
spread and (2) disruption of the DEJ. The epidermal
melanocytes and tumor nests were characterized by bright
reflectance because of melanin. The relative reflectance of a
melanoma cell vs background epidermis was measured to be
5.3. Five tumors additionally studied (Table 1) showed a
relative reflectance of 5.670.9. In general, the images of
tumors contained a high degree of heterogeneity in rCSLM
images compared with their normal counterparts.

Using these refractive indices of 1.51 for keratin, 1.7 for
melanin granules, and 1.35 for backround epidermis, the
Fresnel reflectance (Hecht, 2002) predicted from a plane of
melanin or keratin within epidermis is

R ¼ ððnepi � nÞ=ðnepi þ nÞÞ2 ð1Þ

which yields Rker¼0.0024 and Rmel¼ 0.014 and the ratio
Rmel/Rker is 5.8. This ratio is comparable to the fivefold ratio
of melanocyte reflectance relative to that keratinocyte
reflectance. The simple calculation of Fresnel reflectance
from a planar interface is probably too simple to model
accurately keratinocytes and melanocytes. Scattering also
depends on the small particle size of keratin fibrils and
melanin granules and the larger size of keratin aggregates and
melanosomes. Nevertheless, the observed ratio of fivefold
higher reflectivity for melanocytes relative to keratinocytes is

consistent with the strong reflectivity expected from melanin
granules. The refractive index difference of melanin granules
and keratin fibrils relative to the surrounding epidermis is the
expected basis of optical contrast for imaging of melanoma.

MATERIALS AND METHODS
Animals

The HGF/B6 melanoma model (Noonan et al., 2001) developed at

the National Cancer Institute and George Washington University

was used in this study. Genetically engineered mice overexpressed

HGF/scatter factor, making them susceptible to melanoma induced

by UV radiation on the back (Noonan et al., 2001). Mice used in this

study had a pigmented C57BL/6 genetic background. The UV-

irradiated HGF/B6 mouse developed melanoma through a series of

stages, starting with multiple skin lesions that appeared first as small

tumors (o1 mm diameter, Figure 8) followed by a progressive

swelling of the dermis (Figure 2). Mice with tumors that grew to 1 cm

in diameter were immediately killed and imaged, all other imaging

was done in vivo. All animal studies were approved by the Oregon

Health and Science University Institutional Animal Care and Use

Committee. Hair was removed chemically (NairTM). Tumors on the

lower back were imaged to avoid motion from the heart and lungs.

The underside of the mice, which had not developed melanoma

through UV-induced radiation was imaged as a control.

Figure 8 shows an early-stage lesion. Multiple early-stage lesions

were followed through tumor development. About half of the early-

stage lesions became enlarged and spread laterally. The results

presented in this paper constitute a subset of the laterally spreading

lesions versus normal skin.

One-year-old animals from previous collaborators’ experiments

were used to minimize overall animal use. Lesions were identified

by eye and then imaged with a polarized wide-field microscope

(Jacques et al., 2000, 2002; Gareau et al., 2005) to identify lesions

that were superficial and hence likely to present pagetoid

melanocytes. Animals were placed on a metal plate the size and

shape of a standard microscope slide, with the tumor of interest
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Figure 7. The characteristics of melanoma. (a–i) Tumor images versus (j–l)

normal images. (a–c) Irregular epidermal melanocytes (M) in the epidermis

and hair follicles (H). (d–f) A melanoma tumor nest (M) and hair follicle (H).

(g–i) Disruption of the DEJ is characterized by its broken appearance. (j, k)

Healthy epidermis presents granular cells with dark nuclei. (l) Approximately

10mm below the healthy epidermis, the healthy DEJ presents as relatively

uniform and intact.

Figure 8. Digital photograph of dorsal melanoma tumor (center). Millimeter

markings show the tumor’s diameter to be about 0.7 mm. The animals had

already developed lesions as large as 5 mm in diameter, but also had

early-stage lesions (less than 1 mm diameter), which were deemed early

lesions and chosen for imaging.
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centered over a 2-mm diameter hole in the plate. Optical coupling

between the objective lens and the skin was achieved with a drop

of saline solution. The animal was immobilized in a least

invasive manner with 10 wrappings of an elastic string (Spider-

ThreadTM, Redwing Tackle, Ontario, Canada), which is commonly

used for fixing bait to fishing hooks. This sufficiently stabilized

the skin to minimize movement artifacts because of heartbeat

and breathing. The two-dimensional field of view (x, y, and z¼ 260,

253, and 80 mm, respectively) took about 15 minutes to acquire.

The animal (36 g typical weight) was anesthetized during each

45-minute imaging session by a ketamine/xylazine cocktail

(0.5 ml intraperitoneally, adjusted for animal weight, age, and

tumor load).

rCSLM

An rCSLM incorporating reflectance and fluorescence channels was

designed and assembled. The fluorescence mode capabilities were

designed for other experiments and not used in this report. The

rCSLM used a 488-nm (blue) argon ion laser, x- and y-axis scanning

mirrors, original magnification � 60 water-dipping objective lens

(0.90 NA Olympus LUMPlanFl), a photomultiplier tube (Hamamatsu

Photonics, 5773-01), a data acquisition board (National Instruments,

6062E) and a z-axis motorized stage (Applied Scientific Instrumenta-

tion, Eugene, OR, LS50A) for supporting the animal, Labview

software to control the system, and a Gateway laptop computer

(Microsoft Windows 2000 operating system). A relay lens system

magnified the image to project the central lobe of the airy function

(Rajadhyaksha and Gonzalez, 2003) to be 1.5 times larger than the

50-mm diameter pinhole for confocally matched gating (Wilson and

Sheppard, 1984). The axial resolution limit measured for the system

was 1.25mm. The scanning mirrors provided x–y scans (512� 512

volume elements (voxels), 25 kHz voxel acquisition rate, 10.5 sec-

onds per image) at each depth z in the tissue. The motorized stage

advanced the animal 1mm along the z-axis before each x–y scan 80

times (512� 512� 80 voxels). Post-processing of the data was

carried out using MATLABTM software.

To express voxel values in the units of optical reflectance,

calibration was achieved by imaging the water/glass coverslip

interface with a neutral density filter (optical density¼ 1.0)

attenuating the laser and equating this measurement to the Fresnel

reflectance for a planar water/glass interface with a refractive index

mismatch R¼ ((n1�n2)/(n1þ n2))2¼ 0.0044 for water (n1¼ 1.33) and

glass (n2¼ 1.52). The reflectance (R) of the mouse skin measured

without the neutral density filter was calculated based on the

confocal signal in volts from the mouse (Vm) and from the water/glass

interface (Vwg):

R ¼ Vm

Vwg

0:0044

ð10�ODÞ ð2Þ

Typical values of R for the C57/B6 mouse skin were 10�5–10�4.

Voxel values in the confocal images in this report are presented as

the log of the data log10(R) over the range 10�5oRo10�3. This

graphical display allocates the dynamic range in the image to

optimally include the range of reflectance of the tissue.

Experimental protocol

The back of each animal, which had been exposed to the tumor-

inducing UV radiation, was examined for tumor growth. Anesthesia

was followed by digital photography (Panasonic DMC-FZ20) as

shown in Figure 8, then imaging with a wide field-of-view polarized-

light imaging system (Figure 9, Gareau et al., 2005) that aided in

finding early superficial lesions.

After selecting lesions using the polarized images, animals were

immobilized on the metal plate, which was placed on the rCSLM

stage. The water-dipping objective lens of original magnification� 60

was coupled to the skin surface from below using phosphate-

buffered saline.

Lesions were imaged one to three successive times over a 1-

month period using landmarks of biological features such as tumor

size, shape, and relative location as well as hair follicle location to

keep track of the lesions during successive imaging sessions. At the

last time point of in vivo imaging, the tumors were excised for

histopathology with the position and orientation landmarks of the

tumor noted.
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Figure 9. Polarized image of dorsal melanoma tumors. (a) Normal light

image. (b) Polarized light image, based on difference between two images,

one through linear polarizer oriented parallel to the polarized illumination

and the second cross-polarized perpendicular to the illumination. The

superficial lesion (S) appeared black in both normal-light and polarized-light

images, whereas deeper lesion (D) appears black only in normal-light images.

Bar¼2 mm.
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